Demystifying Clustered and Non-Clustered Indexes in SQL: When to Use Which?

When to Use Clustered and Non-Clustered Indexes in SQL



Indexes are essential tools in SQL databases, helping improve query performance by allowing faster data retrieval. Two common types of indexes are clustered and non-clustered indexes, and knowing when to use each can significantly impact your database's efficiency. In this blog, we'll explore when to use clustered and non-clustered indexes, provide T-SQL 2012 examples, discuss their advantages, disadvantages, use cases, and best practices using a sample product sales dataset.


 

Understanding the Sample Dataset



Let's start by examining a simplified product sales dataset:

| productid | productname       | supplierid | categoryid | unitprice | discontinued  |

|-------------|----------------------|-------------|---------------|------------|--------------|

| 1         | Product HHYDP |      1               | 1                 | 18.00      | 0                    |

| 2         | Product RECZE       | 1               | 1                 | 19.00      | 0                    |

| 3         | Product IMEHJ        | 1               | 2                 | 10.00      | 0                    |

| 4         | Product KSBRM      | 2               | 2                 | 22.00      | 0                    |

| 5         | Product EPEIM        | 2               | 2                 | 21.35      | 1                    |

| 6         | Product VAIIV         | 3                | 2                 | 25.00      | 0                    |

| 7         | Product HMLNI       | 3                | 7                 | 30.00      | 0                    |

| 8         | Product WVJFP        | 3                | 2                 | 40.00     | 0                    |

| 9         | Product AOZBW      | 4                | 6                 | 97.00     | 1                    |

| 10        | Product YHXGE      | 4                | 8                 | 31.00     | 0                    |



Clustered Indexes


A clustered index determines the physical order of data rows in a table. It's like a book's table of contents that orders the content based on a specific column. Clustered indexes are best used in the following scenarios:


Primary Key: When you want to define the primary key for your table. The primary key enforces data uniqueness, and using a clustered index ensures data is stored efficiently.


Range Searches: When you frequently perform range-based queries (e.g., BETWEEN, <, >) on a specific column. Using a clustered index on that column speeds up these operations.


Data Retrieval: When you need to fetch multiple columns quickly. Clustered indexes store all the data columns along with the indexed column, making data retrieval faster.


Here's an example T-SQL code for creating a clustered index on the `productid` column:


CREATE CLUSTERED INDEX IX_ProductID ON Products(productid);



Non-Clustered Indexes


Non-clustered indexes, unlike clustered indexes, don't dictate the physical order of data rows. Instead, they create a separate structure that references the data rows. Non-clustered indexes are more flexible and should be used in the following scenarios:


Frequent Data Retrieval: When you need to retrieve specific columns quickly without returning all columns. Non-clustered indexes store only the indexed column and a reference to the actual data row.


Multiple Indexes: When you want to add multiple indexes to a table without impacting the physical data order. It allows you to optimize specific queries without restructuring the entire table.


Join Operations: When you frequently join tables based on a specific column. Non-clustered indexes on join columns speed up the joining process.


Example T-SQL code for creating a non-clustered index on the `supplierid` column:



CREATE NONCLUSTERED INDEX IX_SupplierID ON Products(supplierid);



Advantages and Disadvantages


Clustered Index Advantages:


1. Physical Data Order: It determines the physical order of data rows, making it efficient for range searches and data retrieval.

2. Primary Key Enforcement: Ideal for enforcing primary key constraints, ensuring data uniqueness.


Clustered Index Disadvantages:


1. Storage Overhead: It can lead to increased storage requirements because it dictates data order.

2. Performance Impact: Updates and inserts can be slower due to data reorganization.


Non-Clustered Index Advantages:


1. Efficient Data Retrieval: Speeds up data retrieval for specific columns.

2. Versatility: Allows multiple indexes without impacting the physical data order.


Non-Clustered Index Disadvantages:


1. Additional Storage: Requires additional storage to store index data.

2. Complexity: Can make write operations slower due to the need to update index structures.


Use Cases


Clustered Index Use Cases:


- Tables with a natural, unique key, such as product IDs.

- Range query-intensive tables like historical data or date-based records.


Non-Clustered Index Use Cases:


- Tables with frequent queries targeting specific columns.

- Join-heavy tables where you need to speed up joins.


Best Practices


- Choose clustered indexes carefully and consider the primary key's suitability.

- Keep non-clustered indexes lean, focusing on the columns you frequently query.

- Regularly monitor and maintain indexes to ensure optimal performance.


Conclusion



Understanding when to use clustered and non-clustered indexes is essential for optimizing database performance. Clustered indexes are best for enforcing primary keys and range-based queries, while non-clustered indexes offer more flexibility for efficient data retrieval and join operations. By following best practices and considering your specific use cases, you can make informed decisions about index implementation in your SQL databases.

Vijay Kashyap Algo Trading Expert

Author & Editor

Has laoreet percipitur ad. Vide interesset in mei, no his legimus verterem. Et nostrum imperdiet appellantur usu, mnesarchum referrentur id vim.